easy_tpp.model.torch_model.torch_intensity_free
Functions
| 
 | Clamp the tensor while preserving gradients in the clamped region. | 
Classes
| 
 | Torch implementation of Intensity-Free Learning of Temporal Point Processes, ICLR 2020. | 
| 
 | Mixture of log-normal distributions. | 
| 
 | Mixture (same-family) distribution, redefined log_cdf and log_survival_function. | 
| 
 | Normal distribution, redefined log_cdf and log_survival_function due to no numerically stable implementation of them is available for normal distribution. | 
- easy_tpp.model.torch_model.torch_intensity_free.clamp_preserve_gradients(x, min_val, max_val)[source]
- Clamp the tensor while preserving gradients in the clamped region. - Parameters:
- x (tensor) – tensor to be clamped. 
- min_val (float) – minimum value. 
- max_val (float) – maximum value. 
 
 
- class easy_tpp.model.torch_model.torch_intensity_free.Normal(loc, scale, validate_args=None)[source]
- Normal distribution, redefined log_cdf and log_survival_function due to no numerically stable implementation of them is available for normal distribution. 
- class easy_tpp.model.torch_model.torch_intensity_free.MixtureSameFamily(mixture_distribution, component_distribution, validate_args=None)[source]
- Mixture (same-family) distribution, redefined log_cdf and log_survival_function. 
- class easy_tpp.model.torch_model.torch_intensity_free.LogNormalMixtureDistribution(locs, log_scales, log_weights, mean_log_inter_time, std_log_inter_time, validate_args=None)[source]
- Mixture of log-normal distributions. - Parameters:
- locs (tensor) – [batch_size, seq_len, num_mix_components]. 
- log_scales (tensor) – [batch_size, seq_len, num_mix_components]. 
- log_weights (tensor) – [batch_size, seq_len, num_mix_components]. 
- mean_log_inter_time (float) – Average log-inter-event-time. 
- std_log_inter_time (float) – Std of log-inter-event-times. 
 
 
- class easy_tpp.model.torch_model.torch_intensity_free.IntensityFree(model_config)[source]
- Torch implementation of Intensity-Free Learning of Temporal Point Processes, ICLR 2020. https://openreview.net/pdf?id=HygOjhEYDH - reference: https://github.com/shchur/ifl-tpp - __init__(model_config)[source]
- Initialize the model - Parameters:
- model_config (EasyTPP.ModelConfig) – config of model specs. 
 
 - forward(time_delta_seqs, type_seqs)[source]
- Call the model. - Parameters:
- time_delta_seqs (tensor) – [batch_size, seq_len], inter-event time seqs. 
- type_seqs (tensor) – [batch_size, seq_len], event type seqs. 
 
- Returns:
- hidden states, [batch_size, seq_len, hidden_dim], states right before the event happens. 
- Return type:
- list