easy_tpp.model.torch_model.torch_intensity_free
Functions
|
Clamp the tensor while preserving gradients in the clamped region. |
Classes
|
Torch implementation of Intensity-Free Learning of Temporal Point Processes, ICLR 2020. |
|
Mixture of log-normal distributions. |
|
Mixture (same-family) distribution, redefined log_cdf and log_survival_function. |
|
Normal distribution, redefined log_cdf and log_survival_function due to no numerically stable implementation of them is available for normal distribution. |
- easy_tpp.model.torch_model.torch_intensity_free.clamp_preserve_gradients(x, min_val, max_val)[source]
Clamp the tensor while preserving gradients in the clamped region.
- Parameters:
x (tensor) – tensor to be clamped.
min_val (float) – minimum value.
max_val (float) – maximum value.
- class easy_tpp.model.torch_model.torch_intensity_free.Normal(loc, scale, validate_args=None)[source]
Normal distribution, redefined log_cdf and log_survival_function due to no numerically stable implementation of them is available for normal distribution.
- class easy_tpp.model.torch_model.torch_intensity_free.MixtureSameFamily(mixture_distribution, component_distribution, validate_args=None)[source]
Mixture (same-family) distribution, redefined log_cdf and log_survival_function.
- class easy_tpp.model.torch_model.torch_intensity_free.LogNormalMixtureDistribution(locs, log_scales, log_weights, mean_log_inter_time, std_log_inter_time, validate_args=None)[source]
Mixture of log-normal distributions.
- Parameters:
locs (tensor) – [batch_size, seq_len, num_mix_components].
log_scales (tensor) – [batch_size, seq_len, num_mix_components].
log_weights (tensor) – [batch_size, seq_len, num_mix_components].
mean_log_inter_time (float) – Average log-inter-event-time.
std_log_inter_time (float) – Std of log-inter-event-times.
- class easy_tpp.model.torch_model.torch_intensity_free.IntensityFree(model_config)[source]
Torch implementation of Intensity-Free Learning of Temporal Point Processes, ICLR 2020. https://openreview.net/pdf?id=HygOjhEYDH
reference: https://github.com/shchur/ifl-tpp
- __init__(model_config)[source]
Initialize the model
- Parameters:
model_config (EasyTPP.ModelConfig) – config of model specs.
- forward(time_delta_seqs, type_seqs)[source]
Call the model.
- Parameters:
time_delta_seqs (tensor) – [batch_size, seq_len], inter-event time seqs.
type_seqs (tensor) – [batch_size, seq_len], event type seqs.
- Returns:
hidden states, [batch_size, seq_len, hidden_dim], states right before the event happens.
- Return type:
list