Source code for easy_tpp.utils.generic

import numpy as np

from easy_tpp.utils import is_torch_available, is_tf_available


def is_tensor(x):
    """
    Tests if `x` is a `torch.Tensor`, `tf.Tensor`, `jaxlib.xla_extension.DeviceArray` or `np.ndarray`.
    """
    if is_torch_available():
        import torch

        if isinstance(x, torch.Tensor):
            return True
    if is_tf_available():
        import tensorflow as tf

        if isinstance(x, tf.Tensor):
            return True

    return isinstance(x, np.ndarray)


def _is_numpy(x):
    return isinstance(x, np.ndarray)


[docs]def is_numpy_array(x): """ Tests if `x` is a numpy array or not. """ return _is_numpy(x)
def _is_torch(x): import torch return isinstance(x, torch.Tensor) def is_torch_tensor(x): """ Tests if `x` is a torch tensor or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch(x) def _is_torch_device(x): import torch return isinstance(x, torch.device)
[docs]def is_torch_device(x): """ Tests if `x` is a torch device or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch_device(x)
def _is_torch_dtype(x): import torch if isinstance(x, str): if hasattr(torch, x): x = getattr(torch, x) else: return False return isinstance(x, torch.dtype) def is_torch_dtype(x): """ Tests if `x` is a torch dtype or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch_dtype(x) def _is_tensorflow(x): import tensorflow as tf return isinstance(x, tf.Tensor) def is_tf_tensor(x): """ Tests if `x` is a tensorflow tensor or not. Safe to call even if tensorflow is not installed. """ return False if not is_tf_available() else _is_tensorflow(x) def _is_tf_symbolic_tensor(x): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(tf, "is_symbolic_tensor"): return tf.is_symbolic_tensor(x) return type(x) == tf.Tensor def is_tf_symbolic_tensor(x): """ Tests if `x` is a tensorflow symbolic tensor or not (ie. not eager). Safe to call even if tensorflow is not installed. """ return False if not is_tf_available() else _is_tf_symbolic_tensor(x)