Source code for easy_tpp.model.torch_model.torch_basemodel

""" Base model with common functionality  """

import torch
from torch import nn

from easy_tpp.model.torch_model.torch_thinning import EventSampler
from easy_tpp.utils import set_device


[docs]class TorchBaseModel(nn.Module):
[docs] def __init__(self, model_config): """Initialize the BaseModel Args: model_config (EasyTPP.ModelConfig): model spec of configs """ super(TorchBaseModel, self).__init__() self.loss_integral_num_sample_per_step = model_config.loss_integral_num_sample_per_step self.hidden_size = model_config.hidden_size self.num_event_types = model_config.num_event_types # not include [PAD], [BOS], [EOS] self.num_event_types_pad = model_config.num_event_types_pad # include [PAD], [BOS], [EOS] self.pad_token_id = model_config.pad_token_id self.eps = torch.finfo(torch.float32).eps self.layer_type_emb = nn.Embedding(self.num_event_types_pad, # have padding self.hidden_size, padding_idx=self.pad_token_id) self.gen_config = model_config.thinning self.event_sampler = None self.device = set_device(model_config.gpu) self.to(self.device) if self.gen_config: self.event_sampler = EventSampler(num_sample=self.gen_config.num_sample, num_exp=self.gen_config.num_exp, over_sample_rate=self.gen_config.over_sample_rate, patience_counter=self.gen_config.patience_counter, num_samples_boundary=self.gen_config.num_samples_boundary, dtime_max=self.gen_config.dtime_max, device=self.device)
[docs] @staticmethod def generate_model_from_config(model_config): """Generate the model in derived class based on model config. Args: model_config (EasyTPP.ModelConfig): config of model specs. """ model_id = model_config.model_id for subclass in TorchBaseModel.__subclasses__(): if subclass.__name__ == model_id: return subclass(model_config) raise RuntimeError('No model named ' + model_id)
[docs] @staticmethod def get_logits_at_last_step(logits, batch_non_pad_mask, sample_len=None): """Retrieve the hidden states of last non-pad events. Args: logits (tensor): [batch_size, seq_len, hidden_dim], a sequence of logits batch_non_pad_mask (tensor): [batch_size, seq_len], a sequence of masks sample_len (tensor): default None, use batch_non_pad_mask to find out the last non-mask position ref: https://medium.com/analytics-vidhya/understanding-indexing-with-pytorch-gather-33717a84ebc4 Returns: tensor: retrieve the logits of EOS event """ seq_len = batch_non_pad_mask.sum(dim=1) select_index = seq_len - 1 if sample_len is None else seq_len - 1 - sample_len # [batch_size, hidden_dim] select_index = select_index.unsqueeze(1).repeat(1, logits.size(-1)) # [batch_size, 1, hidden_dim] select_index = select_index.unsqueeze(1) # [batch_size, hidden_dim] last_logits = torch.gather(logits, dim=1, index=select_index).squeeze(1) return last_logits
[docs] def compute_loglikelihood(self, time_delta_seq, lambda_at_event, lambdas_loss_samples, seq_mask, lambda_type_mask): """Compute the loglikelihood of the event sequence based on Equation (8) of NHP paper. Args: time_delta_seq (tensor): [batch_size, seq_len], time_delta_seq from model input. lambda_at_event (tensor): [batch_size, seq_len, num_event_types], unmasked intensity at (right after) the event. lambdas_loss_samples (tensor): [batch_size, seq_len, num_sample, num_event_types], intensity at sampling times. seq_mask (tensor): [batch_size, seq_len], sequence mask vector to mask the padded events. lambda_type_mask (tensor): [batch_size, seq_len, num_event_types], type mask matrix to mask the padded event types. Returns: tuple: event loglike, non-event loglike, intensity at event with padding events masked """ # Sum of lambda over every type and every event point # [batch_size, seq_len] event_lambdas = torch.sum(lambda_at_event * lambda_type_mask, dim=-1) + self.eps # mask the pad event event_lambdas = event_lambdas.masked_fill_(~seq_mask, 1.0) # [batch_size, seq_len) event_ll = torch.log(event_lambdas) # Compute the big lambda integral in equation (8) of NHP paper # 1 - take num_mc_sample rand points in each event interval # 2 - compute its lambda value for every sample point # 3 - take average of these sample points # 4 - times the interval length # [batch_size, seq_len, n_loss_sample] lambdas_total_samples = lambdas_loss_samples.sum(dim=-1) # interval_integral - [batch_size, seq_len] # interval_integral = length_interval * average of sampled lambda(t) non_event_ll = lambdas_total_samples.mean(dim=-1) * time_delta_seq * seq_mask num_events = torch.masked_select(event_ll, event_ll.ne(0.0)).size()[0] return event_ll, non_event_ll, num_events
[docs] def make_dtime_loss_samples(self, time_delta_seq): """Generate the time point samples for every interval. Args: time_delta_seq (tensor): [batch_size, seq_len]. Returns: tensor: [batch_size, seq_len, n_samples] """ # [1, 1, n_samples] dtimes_ratio_sampled = torch.linspace(start=0.0, end=1.0, steps=self.loss_integral_num_sample_per_step, device=self.device)[None, None, :] # [batch_size, max_len, n_samples] sampled_dtimes = time_delta_seq[:, :, None] * dtimes_ratio_sampled return sampled_dtimes
def compute_states_at_sample_times(self, **kwargs): raise NotImplementedError('This need to implemented in inherited class ! ')
[docs] def predict_one_step_at_every_event(self, batch): """One-step prediction for every event in the sequence. Args: time_seqs (tensor): [batch_size, seq_len]. time_delta_seqs (tensor): [batch_size, seq_len]. type_seqs (tensor): [batch_size, seq_len]. Returns: tuple: tensors of dtime and type prediction, [batch_size, seq_len]. """ time_seq, time_delta_seq, event_seq, batch_non_pad_mask, _, type_mask = batch # remove the last event, as the prediction based on the last event has no label # time_delta_seq should start from 1, because the first one is zero time_seq, time_delta_seq, event_seq = time_seq[:, :-1], time_delta_seq[:, 1:], event_seq[:, :-1] # [batch_size, seq_len] dtime_boundary = time_delta_seq + self.event_sampler.dtime_max # [batch_size, seq_len, num_sample] accepted_dtimes, weights = self.event_sampler.draw_next_time_one_step(time_seq, time_delta_seq, event_seq, dtime_boundary, self.compute_intensities_at_sample_times) # [batch_size, seq_len] dtimes_pred = torch.sum(accepted_dtimes * weights, dim=-1) # [batch_size, seq_len, 1, event_num] intensities_at_times = self.compute_intensities_at_sample_times(time_seq, time_delta_seq, event_seq, dtimes_pred[:, :, None], max_steps=event_seq.size()[1]) # [batch_size, seq_len, event_num] intensities_at_times = intensities_at_times.squeeze(dim=-2) types_pred = torch.argmax(intensities_at_times, dim=-1) return dtimes_pred, types_pred
[docs] def predict_multi_step_since_last_event(self, batch, forward=False): """Multi-step prediction since last event in the sequence. Args: time_seqs (tensor): [batch_size, seq_len]. time_delta_seqs (tensor): [batch_size, seq_len]. type_seqs (tensor): [batch_size, seq_len]. num_step (int): num of steps for prediction. Returns: tuple: tensors of dtime and type prediction, [batch_size, seq_len]. """ time_seq_label, time_delta_seq_label, event_seq_label, batch_non_pad_mask_label, _, type_mask_label = batch num_step = self.gen_config.num_step_gen if not forward: time_seq = time_seq_label[:, :-num_step] time_delta_seq = time_delta_seq_label[:, :-num_step] event_seq = event_seq_label[:, :-num_step] else: time_seq, time_delta_seq, event_seq = time_seq_label, time_delta_seq_label, event_seq_label for i in range(num_step): # [batch_size, seq_len] dtime_boundary = time_delta_seq + self.event_sampler.dtime_max # [batch_size, 1, num_sample] accepted_dtimes, weights = \ self.event_sampler.draw_next_time_one_step(time_seq, time_delta_seq, event_seq, dtime_boundary, self.compute_intensities_at_sample_times, compute_last_step_only=True) # [batch_size, 1] dtimes_pred = torch.sum(accepted_dtimes * weights, dim=-1) # [batch_size, seq_len, 1, event_num] intensities_at_times = self.compute_intensities_at_sample_times(time_seq, time_delta_seq, event_seq, dtimes_pred[:, :, None], max_steps=event_seq.size()[1]) # [batch_size, seq_len, event_num] intensities_at_times = intensities_at_times.squeeze(dim=-2) # [batch_size, seq_len] types_pred = torch.argmax(intensities_at_times, dim=-1) # [batch_size, 1] types_pred_ = types_pred[:, -1:] dtimes_pred_ = dtimes_pred[:, -1:] time_pred_ = time_seq[:, -1:] + dtimes_pred_ # concat to the prefix sequence time_seq = torch.cat([time_seq, time_pred_], dim=-1) time_delta_seq = torch.cat([time_delta_seq, dtimes_pred_], dim=-1) event_seq = torch.cat([event_seq, types_pred_], dim=-1) return time_delta_seq[:, -num_step - 1:], event_seq[:, -num_step - 1:], \ time_delta_seq_label[:, -num_step - 1:], event_seq_label[:, -num_step - 1:]