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Abstract
The RNS-CKKS scheme in Fully Homomorphic Encryption
(FHE) supports crucial features for privacy-preserving ma-
chine learning, such as fixed-point arithmetic and SIMD-
style vectorization. Yet, managing the escalation of cipher-
text scales from homomorphic multiplications, which risks
capacity overflow, along with bootstrapping, presents signif-
icant challenges. These complexities are exacerbated by the
need to efficiently handle scale and bootstrapping at compile
time while ensuring rapid encrypted inference.
In this paper, we present ReSBM, a novel compiler tech-

nique that simultaneously optimizes scale and bootstrapping
for encrypted inference under RNS-CKKS. By partitioning a
program’s data flow graph (DFG) into regions with a uniform
multiplicative depth of one, ReSBM ensures that placements
of Scale Management Operations (SMOs) and bootstraps af-
fect only the latency of a region, not the scales and levels of its
live-out ciphertexts. Our region-based approach tackles the
NP-hard challenge of optimal bootstrapping placement with
hierarchical strategies: (1) optimal intra-region SMO and
bootstrapping placement using min-cut, (2) bootstrapping-
guided rescaling region identification across a sequence of
regions, culminating in tentative bootstrapping at two termi-
nal regions, and (3) minimal-level bootstrap placement across
the DFG, elevating ciphertexts only to the necessary minimal
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level. Validation across a variety of complex models on CPUs
shows that ReSBM not only compiles these models more
rapidly than a leading method but also boosts encrypted
inference efficiency by an average of 12.1% when compared
to another leading method. Consequently, ReSBM substan-
tially improves the practical deployment of large models for
encrypted inference, surpassing existing methods in terms
of both compilation speed and inference performance.
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1 Introduction
Fully homomorphic encryption (FHE) [7] facilitates compu-
tations on encrypted data, addressing privacy concerns when
outsourcing to untrusted servers and enabling secure data
exchanges in regulated sectors like healthcare and finance.
Various FHE schemes, including [8, 11, 15, 16, 20, 27, 42], have
been proposed, with the RNS-CKKS scheme [16] standing
out for encrypted inference due to its support for fixed-point
arithmetic and SIMD-style vectorization. Consequently, it
is broadly supported by FHE libraries such as HEAAN [37],
HElib [36], OpenFHE [1], SEAL [34], and ACElib [6].
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In the RNS-CKKS scheme, each ciphertext is character-
ized by a level and a scale. The level indicates the maximum
depth of multiplications, both direct and indirect, that the
ciphertext can undergo. The scale facilitates the conversion
of encrypted complex (real) values into integers, which is
crucial for operations like encrypted machine learning infer-
ence that predominantly involve real numbers. For example,
the real number 1.6 can be represented as 16 at a scale of
10. When ciphertexts undergo operations like multiplication,
their scales increase, which can potentially lead to capacity
overflow (as detailed in Section 2). For instance, squaring the
value of 16 at a scale of 10 results in 256 at a scale of 100.

To facilitate encrypted inference for machine learning
models, developers must implement these models using FHE
operations provided by established FHE libraries [1, 6, 34,
36, 37]. Manually undertaking this task is challenging, as it
requires developers to meticulously balance security, correct-
ness, and performance, a process that is both time-consuming
and error-prone, often extending over weeks or months even
for experts [24]. To mitigate this burden, a number of FHE
compilers [9, 13, 24, 28, 33, 35, 39, 40] have been introduced.
These compilers, possibly assisted by DSLs, automatically
transform machine learning models into corresponding FHE
programs, effectively balancing security, correctness, and
performance to expedite the inference process.
In RNS-CKKS, ensuring correctness involves managing

ciphertext scales and levels; both additions and multiplica-
tions require ciphertexts at matching levels, and additions
also need identical scales. Scale Management Operations
(SMOs), like rescale (reducing scale and level) andmodswitch
(lowering only the level) [16], are critical for reducing cipher-
text scale and level, thus boosting FHE operation efficiency.
Yet, when a ciphertext’s level falls to zero, halting further
multiplications, bootstrapping [5, 35]—the most expensive
FHE operation—is needed to raise its level, which also raises
the latency of subsequent operations. Effective scale and
bootstrapping management by FHE compilers is vital for
ensuring rapid and accurate encrypted inference.

Problem Statement. We aim to develop a compiler ap-
proach that optimizes the placement of SMOs and bootstraps
for machine learning models using RNS-CKKS on CPUs. This
approach must meet all constraints related to scale and boot-
strapping management while efficiently compiling models
and maximizing encrypted inference efficiency.

Challenges. Given the NP-hard nature of optimal bootstrap-
ping placement [31], efficiently crafting scale and bootstrap-
ping management plans for rapid encrypted inference poses
several challenges. Firstly, the interdependence of rescaling
and bootstrapping complicates their management; scale re-
ductions often require bootstrapping to maintain ciphertext
viability, while bootstrapping raises levels, increasing the
latency of subsequent operations. Secondly, a vast search

space complicates planning. Thirdly, as bootstrapping is RNS-
CKKS’s most resource-intensive operation, minimizing its
use is crucial to prevent excessive overheads. Lastly, effective
scale management must account for bootstrapping outcomes
to efficiently reduce FHE operation latency.

Prior Work. Since most FHE compilers [9, 26, 40] lack boot-
strapping support, existing scale management approaches
are categorized into local or global strategies. Local strategies
like EVA’s waterline rescaling [9] and PARS [40] focus on in-
serting SMOs based on immediate operand and result scales,
efficiently optimizing compile times but often overlooking
overall performance, leading to sub-optimal outcomes. Con-
versely, global strategies such as HECATE [40] and ELASM
[26] target optimal plans by assessing the cumulative impact
of SMOs through hill-climbing-based space exploration, but
they experience low compile-time efficiency, with LeNet5
taking over 300 seconds to compile [26, 40]. While these
methods can automate scale management for smaller FHE
programs, their effectiveness is further limited without boot-
strapping support [35], crucial for larger applications where
bootstrapping significantly impacts operation latencies.
Effective bootstrapping management requires seamless

integration with scale management, especially given the
NP-hard challenge of optimal bootstrapping placement [31].
Fhelipe [24] employs dynamic programming to devise a boot-
strapping plan based on the maximum multiplicative depth,
adopting EVA’s waterline rescaling method [9]. However,
the coordination between scale management and bootstrap-
ping placement is critical for accurate operation latency as-
sessments. DaCapo [35], which conducts liveness analysis
for bootstrapping placement, utilizes PARS [40] for scale
management. This approach can result in sub-optimal out-
comes due to less effective rescaling strategies. Additionally,
while exploration-driven methods like HECATE [40] and
ELASM [26] offer improved solutions over PARS, they also
significantly increase compile times, as noted in [35]. This
extension in compile time limits their practicality for smaller
models, leading DaCapo to avoid using these methods for
bootstrapping management.

This Work. To address the challenges in scale and boot-
strapping management and to surmount the limitations of
existing solutions, we strategically place SMOs and boot-
straps simultaneously within a program. We capitalize on
a critical feature of RNS-CKKS [16]: multiplications are the
only arithmetic operations that increase ciphertext scales.
Each multiplication triggers an increase, while adjustments
to scale and level via SMOs or bootstrapping remain un-
changed until the next multiplication, as detailed in Table 1.
Consequently, we partition the data flow graph (DFG) into
regions, each maintaining a uniform multiplicative depth.
These regions form the primary units for our analysis and
optimization. As illustrated in Figure 1 and explained in Sec-
tion 3, this approach ensures that placements of SMOs and
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bootstraps within a region only affect its latency—the time
required to execute the operations in the region—without
altering the scales and levels of its live-out ciphertexts. There-
fore, effective management of rescaling and bootstrapping
involves strategically determining the insertion points for
these operations within the regions.
We introduce ReSBM, a region-based compiler approach

that efficiently coordinates SMO and bootstrapping place-
ments at compile-time to optimize encrypted inference for
machine learning models. We address the NP-hard challenge
of optimal bootstrapping placement [31] with a hierarchical
divide-and-conquer strategy using four key algorithms:
• Optimal Intra-Region SMO and Bootstrapping Place-
ment using min-cut for finding insertion points for SMOs
(via SMOPLC) and bootstraps (via BTSPLC).
• Bootstrapping-Guided Rescaling Region Identifica-
tion for SMO Placement identifies rescaling regions for
SMO placement in a sequence of regions, ending with ten-
tative bootstrapping at both ends. ScaleMgr strategically
rescales earlier to accelerate ciphertext scale reduction,
minimize levels consumed, and reduce overall sequence
latency.
• Minimal-Level Bootstrapping Placement across the
DFG is enabled by BTSMgr, leveraging ScaleMgr, SMO-
PLC, and BTSPLC. BTSMgr identifies potential bootstrap-
ping points in terminal regions of each region sequence
and selects regions for minimal-level bootstrapping via dy-
namic programming. For each sequence, it uses ScaleMgr
to select rescaling regions for SMO placement, and SMO-
PLC and BTSPLC to determine the optimal placements
of SMOs and bootstraps. Unlike DaCapo [35] and Fhelipe
[24], which elevate ciphertexts to the maximum level, our
approach only raises ciphertexts to the minimal neces-
sary level. This strategy boosts efficiency and optimizes
operations prior to subsequent bootstrapping points.

Contributions. This paper makes four main contributions:
• A region-based compiler approach, ReSBM, that efficiently
coordinates SMO and bootstrapping placements, substan-
tially reducing compile times and enhancing encrypted
inference efficiency while maintaining accuracy.
• The first min-cut-based scale management solution.
• The first minimal-level bootstrapping solution.
• Comprehensive performance evaluations of ReSBM con-
firm its effectiveness in meeting design objectives. Vali-
dation with a diverse range of complex machine learning
models on CPUs demonstrates that ReSBM compiles these
models substantially faster than a state-of-the-art method,
DaCapo [35], by 4250.2×. Additionally, it improves en-
crypted inference efficiency by an average of 12.1% over
another leading method, Fhelipe [24], with the maximum
bootstrapping level set at 16. ReSBM significantly advances

the practical deployment of large models for encrypted
inference, outperforming current methods in both compi-
lation efficiency and inference performance.

ReSBM is now open-sourced within the ANT-ACE compiler
framework [6].

2 Background
We begin with a broad review of representative FHE schemes
(Section 2.1), followed by a detailed examination of RNS-
CKKS [16] adopted in this work (Section 2.2).

2.1 FHE Schemes
Since Gentry introduced the first FHE scheme [7], which re-
freshes ciphertexts through bootstrapping by homomorphi-
cally executing the decryption function, numerous schemes
based on the Learning with Errors (LWE) [30] and Ring
Learning with Errors (RLWE) [38] problems have been de-
veloped. Notable among these are the BFV [11], BGV [42],
and CKKS [15] schemes. Despite these advancements, boot-
strapping remains the most computationally intensive oper-
ation in FHE. Initially, performing a bootstrapping operation
required several hours, but with modern optimizations, this
time has been reduced to the order of seconds [12, 21].
CKKS [15] is based on RLWE, while BGV [42] has two

variants: one based on LWE and another on RLWE. Both
CKKS and the RLWE version of BGV represent ciphertexts
as polynomials, with each polynomial’s coefficients reduced
modulo a user-determined coefficient modulus. However,
BGV and CKKS encrypt different types of values. BGV en-
crypts integers, whereas the CKKS scheme supports fixed-
point arithmetic by encrypting complex numbers scaled with
a user-defined scale, making it particularly desirable for sup-
porting machine learning applications. Despite encrypting
different types of values, both BGV and CKKS support ho-
momorphic addition, multiplication, and Single Instruction
Multiple Data (SIMD)-style batching [32, 41]. This batching
enhances throughput by packing multiple plaintexts into a
single ciphertext, allowing FHE operations to be evaluated
element-wise on multiple plaintexts with approximately the
same efficiency as on a single plaintext [42].
In FHE, ciphertexts inherently contain noise, which in-

creases slightly during homomorphic additions and signif-
icantly during homomorphic multiplications. In the BGV
scheme [42], this noise growth is managed using modulus
switching, a technique that reduces the coefficient modulus
to decrease the noise level. In the CKKS scheme, besides
noise growth, the ciphertext scale also increases exponen-
tially during homomorphic multiplications, potentially lead-
ing to scale overflow. To address this, a rescaling operation is
performed to reduce the ciphertext scale after a certain num-
ber of multiplications. This rescaling is analogous to modulus
switching in BGV, serving a similar role by reducing both
the ciphertext noise and the coefficient modulus.
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2.2 RNS-CKKS
RNS-CKKS [16], a widely used variant of the CKKS scheme
[15], supports fixed-point arithmetic on encrypted complex
numbers, facilitating encrypted machine learning inference.
Below, we review the fundamentals of RNS-CKKS to un-
derstand the essential aspects of scale and bootstrapping
management necessary for its proper operation.

For a power-of-two integer 𝑁 , we define 𝑅 = Z[𝑋 ]/(𝑋𝑁 +
1) as a ring of integer polynomials where 𝑋𝑁 + 1 is the poly-
nomial modulus. The residue ring, denoted by 𝑅𝑄 , is defined
as 𝑅/𝑄𝑅, which is the ring 𝑅 with all polynomial coefficients
taken modulo an integer 𝑄 (the coefficient modulus).
Scale. In CKKS [15], a vector 𝑣 of 𝑁 /2 complex numbers is
encoded into a plaintext 𝑝𝑡 ∈ 𝑅 and encrypted into a cipher-
text 𝑐𝑡 ∈ 𝑅2

𝑄
—a pair of polynomials with cryptographic noise,

where 𝑄 denotes the coefficient modulus of 𝑐𝑡 . The values
in 𝑣 are scaled by 𝑞 to integers during encoding, enabling
fixed-point arithmetic. This scaling mimics operations on the
original floating-point numbers while controlling precision
and noise. Importantly, each ciphertext’s associated scale in-
creases with every multiplication. For instance, multiplying
two ciphertexts at the same level with scales 𝑠0 and 𝑠1 results
in a ciphertext with a scale of 𝑠0 × 𝑠1, as shown in Table 1.
Relinearization. A freshly encrypted ciphertext has two
polynomials; multiplying two such ciphertexts results in
three. Generally, multiplying ciphertexts with𝑚 and 𝑛 poly-
nomials yields𝑚 +𝑛 − 1 polynomials. Relinearization is used
to reduce this number back to two for efficiency [9, 14].
Level. Each ciphertext in CKKS, comprising 𝑛 polynomials,
is tied to a level 𝑙𝑒𝑣𝑒𝑙 and represented as 𝑐𝑡 = (𝑐𝑡0, ..., 𝑐𝑡𝑛−1) ∈
𝑅𝑛
𝑄𝑙𝑒𝑣𝑒𝑙

. Here, 𝑄𝑙𝑒𝑣𝑒𝑙 =
∏𝑙𝑒𝑣𝑒𝑙

𝑗=0 𝑞 𝑗 , where
∏

denotes the prod-
uct operation, 𝑞1, ..., 𝑞𝑙𝑒𝑣𝑒𝑙 are coprime integers approximat-
ing the scale factor 𝑞, and 𝑞0 is a large prime ensuring out-
put precision. The RNS-CKKS variant [16] uses RNS to de-
compose each polynomial 𝑐𝑡𝑖 into (𝑙𝑒𝑣𝑒𝑙 + 1) smaller ones,
𝑐𝑡0𝑖 , ..., 𝑐𝑡

𝑙𝑒𝑣𝑒𝑙
𝑖 , with each 𝑐𝑡

𝑗

𝑖
aligned to its specific modulus

𝑞 𝑗 . This structure, 𝑐𝑡 = (𝑐𝑡 ( 𝑗 )0 , ..., 𝑐𝑡
( 𝑗 )
𝑛−1)0⩽ 𝑗⩽𝑙𝑒𝑣𝑒𝑙 ∈

∏𝑙𝑒𝑣𝑒𝑙
𝑗=0 𝑅𝑛𝑞 𝑗

,
enhances computational efficiency while largely preserving
precision. Arithmetic operations are performed in smaller
rings 𝑅𝑞 𝑗

, simplifying the overall computational complexity.
Arithmetic and Rotation Operations. RNS-CKKS sup-
ports basic arithmetic operations, includingAddCP (ciphertext-
plaintext addition), AddCC (ciphertext-ciphertext addition),
MulCP (ciphertext-plaintext multiplication), and MulCC
(ciphertext-ciphertext multiplication). As described in Sec-
tion 2.1, these operations are all element-wise. For instance,
multiplying two ciphertexts encrypting the vectors [𝑎0, 𝑎1, 𝑎2,
𝑎3] and [𝑏0, 𝑏1, 𝑏2, 𝑏3] yields a ciphertext encrypting [𝑎0 ×
𝑏0, 𝑎1 × 𝑏1, 𝑎2 × 𝑏2, 𝑎3 × 𝑏3]. The Rotate operation shifts
elements within the plaintext of a ciphertext by a speci-
fied amount. For example, rotating a ciphertext encrypting
[𝑎0, 𝑎1, 𝑎2, 𝑎3] by one position yields a ciphertext encrypting

Table 1. Scales and levels of FHE operation results. 𝑠𝑖 and 𝑙𝑖
represent the scale and level of the 𝑖-th operand (𝑖 ∈ {0, 1}),
𝑠res and 𝑙res denote the scale and level of the resultant cipher-
text, and 𝑙bts indicates the target level for bootstrapping.

Operation Constraints 𝑠res 𝑙res

AddCP 𝑐𝑡, 𝑝𝑡 𝑠0 == 𝑠1 && 𝑙0 == 𝑙1 𝑠0 𝑙0
AddCC 𝑐𝑡0, 𝑐𝑡1 𝑠0 == 𝑠1 && 𝑙0 == 𝑙1 𝑠0 𝑙0
MulCP 𝑐𝑡, 𝑝𝑡 𝑙0 == 𝑙1 𝑠0 × 𝑠1 𝑙0
MulCC 𝑐𝑡0, 𝑐𝑡1 𝑙0 == 𝑙1 𝑠0 × 𝑠1 𝑙0
Rotate 𝑐𝑡 , 𝑘 – 𝑠0 𝑙0
Rescale 𝑐𝑡 – 𝑠0/𝑞 𝑙0 − 1

Modswitch 𝑐𝑡 – 𝑠0 𝑙0 − 1
Bootstrap 𝑐𝑡 , 𝑙

bts
– 𝑞 𝑙

bts

[𝑎1, 𝑎2, 𝑎3, 𝑎0]. As noted in Table 1, the scales and levels of the
resulting ciphertexts typically match those of their operands,
except for MulCP and MulCC, which increase the scale.

OperationConstraints. For a ciphertext 𝑐𝑡 , wewrite 𝑐𝑡 .𝑙𝑒𝑣𝑒𝑙
and 𝑐𝑡 .𝑠𝑐𝑎𝑙𝑒 to indicate its level and scale, respectively. Sev-
eral constraints govern FHE operations. Firstly, the cipher-
text level must be non-negative to prevent modulus deple-
tion: 𝑐𝑡 .𝑙𝑒𝑣𝑒𝑙 ⩾ 0. Secondly, MulCP and MulCC operations in-
crease scales, which must remain below the coefficient modu-
lus𝑄𝑙𝑒𝑣𝑒𝑙 to avoid overflow: 𝑐𝑡 .𝑙𝑒𝑣𝑒𝑙 ⩾ ⌈log(𝑐𝑡 .𝑠𝑐𝑎𝑙𝑒)/log(𝑞)⌉
− 1. Finally, RNS-CKKS requires managing scales and levels
for binary operations: both additions and multiplications
necessitate matching levels, and additions require identical
scales as detailed in Table 1 (the first four rows).
To ensure compliance, several scale and bootstrapping

management operations are detailed in Table 1 (the last three
rows): (1) Rescale: Reduces the ciphertext scale by factor 𝑞
and lowers the level by one, suitable for ciphertexts at least
𝑞×𝑞𝑤 , where 𝑞𝑤 denotes the waterline [9], a predefined min-
imum scale. This mitigates RNS-CKKS operation noise [9].
(2) Modswitch: Lowers the ciphertext level by one without
altering its scale, simply switching from𝑄𝑙 to𝑄𝑙−1. (3) Boot-
strapping: Elevates a ciphertext to a specified level 𝑙bts and
sets its scale to 𝑞. Latency depends only on the target level
𝑙bts , not the initial level [5, 35]. This characteristic is utilized
in the development of ReSBM to minimize bootstrapping
levels and thereby enhance bootstrapping efficiency.

3 Motivation
Wemotivate our ReSBMapproach through a simplified ResNet
block, as depicted in Figure 1a, highlighting key differences
from the only two existing methods [24, 35] that tackle the
same problem addressed by us. In FHE compilers [9, 40],
static data-flow graphs (DFGs) or circuits serve as intermedi-
ate representations, excluding control-flow elements such as
conditionals and loops. In FHE, data-dependent operations
like branching cannot be performed on ciphertexts, thus
requiring loop counts to be predetermined at compile-time.
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(d) ReSBM: this paper’s region-based scale and bootstrapping management

Figure 1. Illustrating ReSBM and its distinctions from two existing methods with a simplified ResNet block. The input
ciphertext 𝑥 starts with a scale of 240 at level 1, with both scale factor and waterline set at 𝑞 = 240. Abbreviations used for
operations in Table 1 include RS (Rescale), BTS (Bootstrap), MS (Modswitch), Rot (Rotation), and Relin (Relinearization). 𝐿𝑖
indicates the level of a ciphertext at 𝑖 . FHE operations are color-coded to highlight different types.

In Figure 1a, the ResNet block includes an activation func-
tion (ReLU) and two convolutions (Conv1 and Conv2). The
initial ciphertext 𝑥 starts with a scale of 𝑠 = 240 at level
𝑙 = 1. We assume a scale factor and waterline both set at
𝑞 = 𝑞𝑤 = 240, 𝑞0 = 𝑞, and a maximum bootstrapping level of
𝑙max = 3. In the illustrations from Figure 1a to Figure 1d, we
annotate the level of a ciphertext at 𝑖 with 𝐿𝑖 . Additionally,
FHE operations are color-coded to highlight different types.
In RNS-CKKS [16], non-polynomial functions like ReLU are
approximated with polynomials [25]; here, we use the cubic
polynomial 𝑐3𝑢3 + 𝑐1𝑢 for simplicity. Consistent with EVA
[9], weights and biases are encoded at the waterline.

Without scale and bootstrapping management, the pro-
gram in Figure 1a fails to execute. MulCC and MulCP opera-
tions escalate result scales, leading to discrepancies and mis-
matches that cause runtime errors when adding ciphertexts.
Moreover, in operations like ReLU and Conv2 at 𝐿1, many
ciphertext scales surpass the coefficient modulus 𝑄1 ≈ 280,
the maximum allowed scale capacity, causing scale overflow.

Effective scale management reduces latency for SMOs and
lowers ciphertext levels to speed up FHE operations. Table 2
lists latencies (measured on a CPU@2.70GHz using ACElib’s
FHE APIs [6]) and worst-case time complexities of key FHE
operations. To underscore compile-time optimization oppor-
tunities, MulCC and Relinearization are listed separately in
Table 2, following EVA’s approach [9], although DaCapo
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Figure 2. Architecture of ResNet, depicting each ResNet
block on a separate line. Abbreviations: APR for approximate
ReLU, BTS for bootstrapping, and Conv for convolution.

[35] combines them into a single ciphertext-ciphertext mul-
tiplication operation. Modswitch, involving the dropping of
one modulo, is the least costly operation. In contrast, boot-
strapping is the most time-consuming, followed by rotation
and relinearization. Although rescaling is less time-intensive,
its latency exceeds those of operations like AddCP, AddCC,
MulCP, and MulCC. Thus, strategically placing SMOs is es-
sential to minimize their latency and enhance the efficiency
of subsequent, more costly operations such as bootstrapping,
relinearization, and rotation.
In machine learning models, as depicted in Figure 2, the

output from one block typically serves as the input for the
next. Bootstrapping, which elevates ciphertext levels for sub-
sequent multiplications, is essential but costly, far exceeding
the expenses of rotation and relinearization (Table 2). Since
FHE operations are more efficient at lower ciphertext levels,
effective bootstrapping management is crucial to minimize
both its own latency and that of subsequent operations [5, 35].
Ideally, bootstrapping should elevate a ciphertext from level
0 (𝐿0) only to the minimal necessary level, optimizing over-
all latency. Bootstrapping to the maximum level (𝑙max) and
reducing it with nearly zero-cost modswitch operations is
not effective, as higher bootstrapping levels significantly in-
crease costs (Table 2). Therefore, integrating bootstrapping
with scale management is key to accurately determining
necessary ciphertext levels for each operation.

In Figure 1b to Figure 1d, we compare the scale and boot-
strapping management techniques of Fhelipe [24] and Da-
Capo [35]—the only two compiler methods currently sup-
porting bootstrapping in the literature—with our ReSBM
approach. Both Fhelipe and DaCapo elevate ciphertexts to
the maximum allowed level 𝑙max (with 𝑙max = 3 in this simple
example), which may increase latency. Fhelipe employs dy-
namic programming for bootstrapping decisions alongside
EVA’s waterline method [9] for scale management, whereas

DaCapo uses liveness analysis for bootstrapping and PARS
[40] for scale management, with both EVA and PARS serv-
ing as local rescaling strategies. Conversely, global strate-
gies such as HECATE [40] and ELASM [26], which rely
on hill-climbing space exploration, are impractically time-
consuming for large models, taking about 300 seconds even
for simple models like LeNet5 [35]. Our ReSBM approach
stands out by integrating scale and bootstrapping manage-
ment to only elevate ciphertexts to the minimal necessary
level, marking it as the first approach to do so.
Let us review the solutions implemented by Fhelipe and

DaCapo as depicted in Figures 1b and 1c. Both employ lo-
cal rescaling strategies—EVA by Fhelipe and PARS by Da-
Capo—centered on immediate operand and result scales. This
focus can sometimes cause broader performance impacts and
inefficiencies to be overlooked. EVA mandates that the scale
of a multiplication result, 𝑠res , must be less than 𝑞×𝑞𝑤 , while
PARS permits 𝑠res ≤ 𝑞 × 𝑞2𝑤 and requires each operand’s
ciphertext scale, 𝑠opr , to stay within 𝑞 × 𝑞𝑤 . As a result, EVA
tends to rescale more aggressively, enabling two rotations
in Conv2 at 𝐿0. Conversely, the more conservative rescaling
by PARS leads to these rotations occurring at 𝐿1, unneces-
sarily increasing latency by 12.9%. Although both methods
trigger rescaling at specific threshold levels, EVA’s frequent
rescaling can sometimes degrade performance. Adopted by
Fhelipe, EVA introduces an average of 21.6× more rescaling
operations than ReSBM, as detailed in Section 5.
For bootstrapping, both Fhelipe and DaCapo elevate the

output ciphertext from the last AddCC in each convolution
layer to the maximum level (𝑙max = 3). While the first boot-
strap in Conv1 is necessary, the second in Conv2 is excessive,
necessitating two modswitch operations to lower it to 𝐿1 for
the final multiplication at the end.
Figure 1d illustrates the solution found by our compiler

approach, ReSBM. This region-based strategy coordinates
scale and bootstrapping management hierarchically, quickly
compiling large machine learning models into efficient FHE
programs and boosting encrypted inference efficiency.

In ReSBM, the DFG of a program is divided into a sequence
of data-dependent regions, each with a consistent multiplica-
tive depth of one, as illustrated in Figure 1d. Multiplications
(MulCC and MulCP), which are the only operations that in-
crease ciphertext scales, are positioned at the beginning of
each region. Thus, the number of these regions is equivalent
to the program’s maximummultiplicative depth plus one. As
shown in Figure 1d, ReSBM divides the DFG into six regions,
corresponding to the example’s multiplicative depth of five.

Once the DFG is segmented into regions, SMOs and boot-
straps are exclusively inserted within these regions. Inser-
tions within a region modify ciphertext scales and levels at
these points, but such changes persist unchanged through-
out the region, impacting only the region’s latency, not the
region’s live-out scales and levels. Treating regions as fun-
damental units for optimization simplifies the management
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Table 2. Time complexities and latencies of RNS-CKKS operations on a CPU@2.70 GHz obtained using ACElib’s FHE APIs [6]
at varying levels 𝑙 , with 𝑁 = 216 (ms).

Operation Time Complexity 𝑙 = 0 𝑙 = 2 𝑙 = 4 𝑙 = 6 𝑙 = 8 𝑙 = 10 𝑙 = 12 𝑙 = 14 𝑙 = 16

AddCP 𝑂 (𝑁 × 𝑙) 0.138 0.575 0.886 1.268 1.714 1.931 2.295 2.807 3.066
AddCC 𝑂 (𝑁 × 𝑙) 0.164 0.548 0.936 1.344 1.690 2.089 2.561 3.089 3.574
MulCP 𝑂 (𝑁 × 𝑙) – 1.175 1.993 2.746 3.553 4.354 5.175 5.902 6.837
MulCC 𝑂 (𝑁 × 𝑙) – 2.509 4.237 6.021 7.750 9.280 11.129 13.053 15.638
Rotate 𝑂(𝑁 × log(𝑁 ) × 𝑙2) 58.422 77.521 93.799 111.901 130.940 150.321 241.560 243.323 290.575
Relinearization 𝑂(𝑁 × log(𝑁 ) × 𝑙2) – 76.947 93.617 111.819 130.493 149.586 215.768 242.031 262.308
Rescale 𝑂(𝑁 × log(𝑁 ) × 𝑙2) – 9.085 15.107 21.333 27.535 33.792 40.068 46.372 52.744
Bootstrap – – 21005 23738 26229 30413 34556 37844 41582 44719
Modswitch 𝑂 (1) –

of scale and bootstrapping to strategic insertions within
each respective region. This region-based method utilizes a
three-tier divide-and-conquer strategy, streamlining the im-
plementation of our minimal-level bootstrapping approach
and the development of efficient, high-performance rescaling
and bootstrapping plans for large machine learning models:

• Optimal Intra-Region SMO and Bootstrapping Place-
ment utilizes min-cut for inserting SMOs (via SMOPLC)
and bootstraps (via BTSPLC) within individual regions. In
this motivating example, once Regions 2 and 5 are des-
ignated for bootstrapping, BTSPLC finds two bootstrap
points (in Conv1 and Conv2), just like Fhelipe and Da-
Capo. However, SMOPLC’s SMO placements differ. For
instance, in Region 2, optimal placement of SMOs by SMO-
PLC markedly reduces total latency (excluding the BTS
operation)—from 142.616 ms with Fhelipe and 143.860 ms
with DaCapo, to 131.832 ms under ReSBM.
• Bootstrapping-Guided Rescaling Region Identifica-
tion for SMO Placement identifies rescaling regions for
SMO placement in a sequence, concluding with tentative
bootstrapping at both ends, managed by ScaleMgr. To re-
duce latency and minimize level consumption, ScaleMgr
applies early rescaling to expedite scale reduction. As
shown in Figure 1d, rescaling is necessary in every re-
gion for the sequence from Region 2 to Region 5, but only
in Region 5 for the sequence from Region 5 to Region 6.
• Minimal-Level Bootstrapping Placement across the
DFG uses BTSMgr to identify regions for minimal-level
bootstrapping via dynamic programming. This process ex-
amines each sequence of regions, particularly the terminal
ones, to optimize SMO and bootstrapping placements and
minimize sequence latency. ScaleMgr pinpoints rescaling
regions within each sequence, while SMOPLC and BTSPLC
fine-tune the placement of SMOs and bootstraps, respec-
tively. In contrast to Fhelipe [24] and DaCapo [35], which
elevate ciphertexts to maximum levels, our method keeps
levels minimal, boosting bootstrapping efficiency and sub-
sequent operations. Consider Figure 1d: Analysis from

Algorithm 1: The ReSBM compiler approach.
input :𝐺 as the DFG of an FHE program
output :𝐺 ′ with the SMOs and bootstraps inserted

1 𝑅 ← BuildRegionedDFG(𝐺)
2 𝑃 ← BTSMgr (𝑅)
3 𝐺 ′ ← InsertScaleAndBootstrappingPlan(𝑃 )
4 return 𝐺 ′

Region 2 to Region 5 identifies these as critical bootstrap-
ping points, prompting ScaleMgr to recommend rescaling
the entire sequence and setting Region 2’s minimal boot-
strapping level at 𝑙max = 3. For the sequence from Region
5 to Region 6, only level 1 bootstrapping is necessary in
Region 5. Both Fhelipe and DaCapo select 𝑙max = 3 (Fig-
ures 1b and 1c), necessitating two modswitch operations
to reduce it to level 1. Although modswitch operations
are 𝑂 (1), bootstrapping the ciphertext to 𝑙max = 3 incurs
significantly higher overhead than direct bootstrapping to
level 1, resulting in inefficiencies (Table 2).

4 The ReSBM Approach
ReSBM, as outlined in Algorithm 1, processes the DFG of an
FHE program,𝐺 , transforming it into an optimized DFG,𝐺 ′,
incorporating SMOs and bootstraps to satisfy all scale and
bootstrapping requirements (Section 2). Initially, 𝐺 is seg-
mented into a region-based DFG,𝑅 (Section 4.1). In line 2, our
bootstrapping manager, BTSMgr, formulates a rescaling and
minimal-level bootstrapping plan for 𝑅 (Section 4.2). This
step includes evaluating each sequence of regions within 𝑅,
planning tentative bootstrapping at both ends, and collabo-
rating with ScaleMgr (Section 4.3) to identify appropriate
rescaling regions for SMO placement. This effort also estab-
lishes the minimal bootstrapping level at the start relative to
the next bootstrapping point at the end region. BTSMgr uti-
lizes SMOPLC to optimize SMO placements in these regions
and BTSPLC for bootstraps at the start region (Section 4.4).
Finally, in line 3, ReSBM implements this comprehensive
plan in 𝐺 , culminating in the enhanced DFG, 𝐺 ′.
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Figure 3. Two region partitions for 𝑎3x3 + 𝑎1x.

4.1 DFG Partitioning
ReSBM partitions a program’s DFG into regions, ensuring
each region contains MulCC and MulCP multiplications that
establish a multiplicative depth of exactly one. Consequently,
the number of regions equals the program’s maximum mul-
tiplicative depth plus one. Moreover, the multiplications
within a region are always positioned at its beginning.

In FHE, loops have compile-time known bounds. To stream-
line analysis and optimization, loops are unrolled only when
necessary. A loop is not unrolled if the maximum multi-
plicative depth in its unrolled version is one; otherwise, it is
unrolled. When calculating the latency for an unrolled loop,
the latency is adjusted by the number of iterations.

Figure 3 shows two different region partitions for a simple
FHE program, 𝑎3𝑥3 + 𝑎1𝑥 , with a preference for the one in
Figure 3b over Figure 3a. While multiplications at the pro-
gram’s maximum multiplicative depth are uniquely assigned
to distinct regions, other nodes not on this critical path have
flexibility in their placement. For instance, MulCP for 𝑎1𝑥 ,
calculated at depth 2 but used at depth 3, is placed in the
depth 2 region in Figure 3a but in the depth 3 region in Fig-
ure 3b. In Figure 3a, a modswitch must be introduced after
the MulCP operation to match levels for the final AddCC, but
this order is reversed in Figure 3b. This reversal in Figure 3b,
which performs MulCP at a lower level, enhances efficiency
and performance (as revealed earlier in Table 2).

At line 1 of Algorithm 1, ReSBMapplies BuildRegionedDFG
to construct a region-based graph 𝑅 uniquely from a DFG,
𝐺 , in three clear steps. Initially, the first region, 𝑅0, contains
the input ciphertexts from𝐺 . Next, the critical path 𝐷 , repre-
senting𝐺 ’s maximum multiplicative depth, is identified, and
each multiplication at depth 𝑖 is placed in region 𝑅𝑖 . Finally,
two traversals on 𝐺 allocate other nodes not on 𝐷 to their
appropriate regions. During the forward pass, each node is
assigned to the region with the smallest number among its

Algorithm 2: BTSMgr: Bootstrapping manager.
input :𝑅 as a region-based graph of a DFG
output :𝑃𝑙𝑎𝑛 as a rescaling and bootstrapping plan

1 minLAT[𝑅.first] ← 0
2 foreach 𝑟 ∈ (R.first, R.last]) do
3 minLAT[𝑟 ] ← DOUBLE_MAX
4 foreach 𝑠𝑟𝑐 ∈ [R.first, R.last) do
5 foreach 𝑑𝑠𝑡 ∈ (𝑠𝑟𝑐 , R.last] do
6 RescalingRegions← ScaleMgr (𝑠𝑟𝑐 , 𝑑𝑠𝑡 )
7 𝑙bts ← |RescalingRegions \ {𝑠𝑟𝑐}|
8 if 𝑙bts > 𝑙𝑚𝑎𝑥 then
9 break

10 L ← 0
11 foreach 𝑟 ∈ RescalingRegions \ {𝑑𝑠𝑡} do
12 RescalingPlan← SMOPLC(𝑟 )
13 if 𝑟 == “𝑠𝑟𝑐” then
14 BTSPlan← BTSPLC(𝑠𝑟𝑐, 𝑙bts)
15 L ← L + 𝑟 ’s latency after RescalingPlan,

and BTSPlan (if any), have been applied to 𝑟
16 𝑛𝑒𝑤𝐿𝐴𝑇 ← minLAT[𝑠𝑟𝑐] + L
17 if 𝑛𝑒𝑤𝐿𝐴𝑇 < minLAT[𝑑𝑠𝑡] then
18 minLAT[𝑑𝑠𝑡] ← 𝑛𝑒𝑤𝐿𝐴𝑇

19 𝑃𝑙𝑎𝑛[𝑑𝑠𝑡]←{𝑠𝑟𝑐, BTSPlan, RescalingPlan}

20 return 𝑃𝑙𝑎𝑛

predecessors’ regions. In the backward pass, each multipli-
cation node is shifted to the region with the highest number
among those containing its successors, ensuring that each
region begins with multiplications, as illustrated in Figure 1d.
This method of forming regions results in the selection of
Figure 3b and the exclusion of Figure 3a.
By design, 𝑅 is always a sequence of (data-dependent)

regions corresponding to𝐺 ’s maximum multiplicative depth
(plus one), as illustrated in Figure 1d. We write 𝑅.first and
𝑅.last for 𝑅’s first and last regions, respectively.

4.2 Bootstrapping Management
BTSMgr, as outlined in Algorithm 2, processes a region-
based DFG 𝑅 to devise a rescaling and bootstrapping plan
through dynamic programming. In this algorithm, 𝑙max in-
dicates the highest level to which a level 0 ciphertext can
be bootstrapped, setting roughly the limit on the distance
between two consecutive bootstrapping points in 𝑅.
After initialization at lines 1-3, the core functionality of

BTSMgr unfolds within two loops at lines 4-5, processing a
sequence of regions [𝑠𝑟𝑐, 𝑑𝑠𝑡] with 𝑠𝑟𝑐 and 𝑑𝑠𝑡 as tentative
bootstrapping points. ScaleMgr identifies rescaling regions
in RescalingRegions (line 6), while 𝑙bts at line 7 denotes lev-
els consumed in (𝑠𝑟𝑐, 𝑑𝑠𝑡], excluding 𝑠𝑟𝑐 where rescaling



Region-based Scale and Minimal-Level Bootstrapping Management ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

precedes bootstrapping (Section 4.4). Lines 8-9 dismiss infea-
sible bootstrapping pairs. Lines 10-15 utilize SMOPLC and
BTSPLC to optimize SMO and bootstrapping placements in
RescalingRegions, with 𝑑𝑠𝑡 excluded as it transitions to a start
region in future sequences. At line 15, the latency for region 𝑟
is calculated by summing the latencies of all FHE operations
within that region. Lines 16-19 update the plan per dynamic
programming standards. Note that bootstrapping is required
for the first region in 𝑅 when its input ciphertexts start at
level 0, which is managed similarly.

For our motivating example, applying BTSMgr results in
the rescaling and bootstrapping plan depicted in Figure 1d.
Specifically, there are bootstraps in Region 2 and Region 5.
The minimum latency minLAT[6] = 42509 is the lowest. If
the second bootstrap is moved from Region 5 to Region 4,
the overall latency minLAT[6] = 42754 increases.

4.3 Scale Management
ScaleMgr, detailed in Algorithm 3, processes a sequence of
regions [𝑠𝑟𝑐, 𝑑𝑠𝑡] with 𝑠𝑟𝑐 and 𝑑𝑠𝑡 as tentative bootstrapping
points, and records rescaling regions in RescalingRegions. A
ciphertext is eligible for rescaling if its scale is at least 𝑞×𝑞𝑤 .
As scales increase exponentially with more multiplications,
early rescaling reduces latency. Each rescaling lowers the
level by one, emphasizing the importance of targeting re-
gions that significantly decrease the output scale of 𝑑𝑠𝑡 (its
live-out ciphertexts). Between two rescaling options that
offer the same reduction in output scale, the earlier one is
preferred to enable more operations at a lower level.
We sequentially identify rescaling regions by scanning
[𝑠𝑟𝑐, 𝑑𝑠𝑡] using two loops at lines 3 and 5. Starting with
region = 𝑠𝑟𝑐 (line 2), we search for the best rescaling region
within [region, 𝑑𝑠𝑡] during the current round as detailed in
lines 5-10. The search halts (lines 7-8) when SMORegion is
determined to be the best choice (line 11), driven by the accu-
mulation of ciphertext scales from multiplications along the
sequence. If further rescaling is needed, the process resumes
from [SMORegion + 1, 𝑑𝑠𝑡] (lines 13-14).
As illustrated in Figure 1d, rescaling is required in every

region in [Region 2, Region 5], but only in Region 5 for the
sequence [Region 5, Region 6].

4.4 SMO and Bootstrap Placement via Min-Cut
ReSBM applies SMOPLC, detailed in Algorithm 4, and BT-
SPLC, outlined in Algorithm 5, to find the optimal placements
of SMOs and bootstraps within a region, respectively.
Given a region represented by an unweighted directed

graph, 𝐺𝑟 , we use SMOPLC to find a minimum cut for opti-
mal SMO insertion points. This process involves two steps:
initially, transforming 𝐺𝑟 into a multi-source, multi-sink
weighted graph,𝐺 ′𝑟 (lines 1-13), and subsequently applying
a min-cut algorithm [29] to 𝐺 ′𝑟 (line 14). Rescaling at these
points minimizes the region’s latency. L[𝑛] [𝑙] indicates the
latency of operation 𝑛 at level 𝑙 , with RS denoting a rescaling

Algorithm 3: ScaleMgr: scale management.
input : [𝑠𝑟𝑐, 𝑑𝑠𝑡] with bootstrapping at both ends
output :RescalingRegions as a set of regions

1 RescalingRegions← ∅
2 region← 𝑠𝑟𝑐

3 while region ⩽ 𝑑𝑠𝑡 do
4 bestScale← INT_MAX

5 for CanRegion ∈ [region, dst] do
6 scale← the scale of 𝑑𝑠𝑡 ’s live-out ciphertexts

after rescaling has been applied in CanRegion

7 if scale ⩾ bestScale then
8 break
9 SMORegion← CanRegion

10 bestScale← scale

11 Add SMORegion to RescalingRegions

12 region← SMORegion + 1
13 if bestScale ⩽ q then
14 break

15 return RescalingRegions

Algorithm 4: SMOPLC: optimal SMO placement.
input :𝐺𝑟 = (𝑁𝑟 , 𝐸𝑟 ) as a directed graph for region 𝑟
output :𝑚𝑖𝑛𝐶𝑢𝑡 as the minimum cut in 𝐺𝑟

(post-transformation)
1 𝑠𝑟𝑐 ← set of source (MulCC or MulCP) nodes in 𝐺𝑟

2 𝑠𝑛𝑘 ← set of sink nodes in 𝐺𝑟

3 𝑙 ← level of the MulCC/MulCP operations in 𝐺𝑟

4 𝑡𝑜𝑝𝑜𝑆𝑜𝑟𝑡 ← topological sort of 𝐺𝑟

5 foreach 𝑛 ∈ topoSort do
6 L𝑆𝑀𝑂

𝑛 ← 𝑛.freq × L[𝑅𝑆] [𝑙])
7 if 𝑛 ∈ 𝑠𝑟𝑐 then
8 L𝑖𝑛𝑐

𝑛 ← 0
9 else
10 L𝑖𝑛𝑐

𝑛 ← L[𝑛] [𝑙] −L[𝑛] [𝑙 −1] +
∑︁

𝑚∈pred(𝑛)
L𝑖𝑛𝑐
𝑚

11 foreach𝑚 ∈ succ(𝑛) do
12 𝑤 (𝑛,𝑚) ← (L𝑆𝑀𝑂

𝑛 + L𝑖𝑛𝑐
𝑛 )/|succ(𝑛) |

13 𝐺 ′𝑟 ← 𝐺𝑟 constructed with the transformation above
14 𝑚𝑖𝑛𝐶𝑢𝑡 ← min-cut(𝑠𝑟𝑐, 𝑠𝑛𝑘,𝐺 ′𝑟 ) [29]
15 return minCut

operation. 𝑛.freq represents the statically known loop count
for operation 𝑛 if it is in the loop, and 1 otherwise. pred (succ)
maps a node to its predecessors (successors).
When performing min-cut in 𝐺𝑟 , the backedge of a loop

is disregarded since any loop containing multiplications has
a consistent multiplicative depth of one (Section 4.1). This
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Algorithm 5: BTSPLC: optimal bootstrapping placement.
input :𝐺𝑟 = (𝑁𝑟 , 𝐸𝑟 ) as a directed graph for region 𝑟

𝑙bts as the target bootstrapping level
output :𝑚𝑖𝑛𝐶𝑢𝑡 as the minimum cut in 𝐺𝑟

(post-transformation)
1 𝐺 ′𝑟 ←𝐺𝑟 with only level-0 nodes, excluding rescaling

operations inserted in line 12 of Algorithm 2 and
their outgoing edges

2 𝑠𝑟𝑐 ← set of source nodes in 𝐺 ′𝑟
3 𝑠𝑛𝑘 ← set of sink nodes in 𝐺 ′𝑟
4 𝑟𝑒𝑣𝑇𝑜𝑝𝑜𝑆𝑜𝑟𝑡 ← reverse topological sort of 𝐺 ′𝑟
5 foreach n ∈ revTopoSort do
6 L𝐵𝑇𝑆

𝑛 ← 𝑛.freq × L[𝐵𝑇𝑆] [𝑙bts])
7 if 𝑛 ∈ 𝑠𝑛𝑘 then
8 L𝑖𝑛𝑐

𝑛 ← 0
9 else
10 L𝑖𝑛𝑐

𝑛 ← L[𝑛] [𝑙bts] − L[𝑛] [0] +
∑

𝑚∈succ(𝑛) L𝑖𝑛𝑐
𝑚

11 foreach𝑚 ∈ pred(𝑛) do
12 𝑤 (𝑚,𝑛) ← (L𝐵𝑇𝑆

𝑛 + L𝑖𝑛𝑐
𝑛 )/|pred(𝑛) |)

13 𝐺 ′′𝑟 ← 𝐺 ′𝑟 with the weights created above
14 𝑚𝑖𝑛𝐶𝑢𝑡 ← min-cut(𝑠𝑟𝑐, 𝑠𝑛𝑘,𝐺 ′′𝑟 ) [29]
15 return minCut

streamlines the process, achieving the same minimum as if
all loops were fully unrolled, thereby enhancing efficiency.

Initially, 𝑠𝑟𝑐 and 𝑠𝑛𝑘 represent the source and sink nodes
in𝐺𝑟 , respectively (lines 1-2). Line 3 sets 𝑙 as the initial level
for all multiplications in the region, which is decreased by
one via rescaling. From lines 4-10, each node 𝑛 is analyzed in
topological order. The edge weight𝑤 (𝑚,𝑛) includes: (1) the
latency of a rescaling operation (RS) to be inserted after 𝑛
(line 6), and (2) the cumulative latency increase of 𝑛’s direct
and indirect predecessors (line 10) compared to when RS is
immediately applied after the source nodes (line 8). Lines 11-
12 address the necessity of the divisor succ, as the RS will be
actually added on a new edge (𝑛,𝑚′), creating a new node
𝑚′ and new edges {(𝑚′,𝑚) | 𝑚 ∈ succ(𝑛)}. The process
concludes with a minimum cut on 𝐺 ′𝑟 (lines 13-15).
We employ BTSPLC from Algorithm 5 to optimize boot-

strap placements in region𝐺𝑟 . Like SMOPLC in Algorithm 4,
BTSPLC operates in reverse. As outlined in Algorithm 2,
when BTSPLC is invoked (line 14), any necessary rescaling
has already modified the ciphertext levels in 𝐺𝑟 (line 12),
preparing for bootstrap insertions. Our ReSBM approach
only inserts bootstraps for level-0 ciphertexts post-rescaling
(lines 1-2). Line 6 details L[𝑛] [𝑙bts], the latency for a boot-
strapping operation 𝑛 at level 𝑙bts, and line 10 measures the la-
tency increase, L[𝑛] [𝑙𝑏𝑡𝑠 ] −L[𝑛] [0], if a bootstrap is placed
before 𝑛 rather than at the region’s end (line 8).

Figure 4 demonstrates theminimum cut identified by SMO-
PLC for SMO placement in Region 2 (Figure 1d), allowing
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Figure 4. Optimal SMO placement for Region 2 in Figure 1d.

ReSBM to achieve the lowest latency at 131.832 ms. In con-
trast, Fhelipe [24] and DaCapo [35] (Figures 1b and 1c) em-
ploy non-minimum cuts, resulting in higher latencies of
142.616 ms and 143.860 ms, respectively. For bootstrapping,
all three methods identified the same insertion point, consis-
tently using the maximum bootstrap level 𝑙max = 3.

Moving to Region 5, as depicted in Figure 1d, we observe
that for scale management, both Fhelipe and DaCapo yield
sub-optimal solutions (Figures 1b and 1c). In terms of boot-
strapping, ReSBM employs the minimal level of 1, whereas
Fhelipe and DaCapo both utilize the maximum level 𝑙max = 3.

Theorem1. Given a region, SMOPLC in Algorithm 4 produces

a minimum cut that minimizes its total execution time.

Proof. This arises from how edge weights are set in Algo-
rithm 4. Specifically, the weight for each edge (line 12) within
the region represents the combined cost of executing a rescal-
ing operation on that edge and the additional cost incurred
relative to performing rescaling at the region’s outset (lines 8
and 10). Consequently, the minimum cut identified by SMO-
PLC minimizes the total weight across this cut, effectively
minimizing the overall execution time of the region. □

Theorem 2. Given a region, BTSPLC in Algorithm 5, when

restricted to the region’s level-0 nodes (line 1), produces a min-

imum cut that minimizes its total execution time.

Proof. Follows from the reasoning in Theorem 1’s proof. □

4.5 Time Complexities
Both SMOPLC (Algorithm 4) and BTSPLC (Algorithm 5),
primarily governed by a min-cut algorithm, exhibit a worst-
case complexity of𝑂 (𝑛3) when applied to a region consisting
of 𝑛 nodes, with 𝑛 roughly equivalent to the number of edges.
In ScaleMgr (Algorithm 3), the worst case involves se-

lecting all 𝐿 regions in a sequence [𝑠𝑟𝑐, 𝑑𝑠𝑡] for rescaling.
Calculating the scale of live-out ciphertexts at 𝑑𝑠𝑡 in each
region requires 𝑂 (𝑛) computations, with 𝑛 nodes per region
(line 6). Therefore, the total time complexity is 𝑂 (𝑛 × 𝐿2).

For BTSMgr (Algorithm 2), the most time-consuming
steps are ScaleMgr (line 6), SMOPLC (line 12), and BTSPLC
(line 14). Considering a DFG 𝐺 with 𝑅 regions and 𝑛 nodes
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per region, the time complexity for scale management (line
12) is O(𝑅 × 𝑙max × 𝑇𝑠𝑚), where 𝑇𝑠𝑚 = 𝑂 (𝑛 × 𝑙2max) covers
one call to ScaleMgr. This analysis assumes each region
is evaluated 𝑂 (𝑙max) times (lines 8-9). By caching min-cut
results, the complexity for SMOPLC and BTSPLC reduces
to O(𝑅 × 𝑙max × 𝑛3), where 𝑂 (𝑛3) reflects the cost for one
min-cut application. Here, 𝑙max indicates multiple process-
ings of the same region due to varying live-in ciphertext
levels. Therefore, the total time complexity of BTSMgr (i.e.,
our ReSBM approach) is O(𝑅 × 𝑙max × 𝑛 × (𝑙2max + 𝑛2)). Since
neither 𝑙max nor 𝑛 scales with the size of a machine learning
model, the overall complexity is linearly related to 𝑅, which
equals the model’s maximum multiplicative depth plus one.

4.6 Limitations of ReSBM
ReSBM partitions a program’s DFG into regions, optimizing
the placement of SMOs and bootstraps within each region.
Although optimal within individual regions, ReSBM is not
optimal across the entire DFG due to the NP-hard nature
of optimal global bootstrapping placement [31]. As a result,
ReSBM may produce sub-optimal plans in scenarios that
require cross-region optimization. Nonetheless, these plans
can be enhanced through additional compiler optimizations.
Figure 5 shows a sub-optimal plan by ReSBM that can

be improved with compiler optimizations, aiming to min-
imize latency for executing all SMOs and bootstraps. In
this example, the ciphertext polynomials 𝑦 = 𝑎3𝑥

3 and 𝑧 =

𝑎4 ((𝑎1𝑥)2 +𝑦4) are computed, with 𝑥 starting at level 0 with
a scale of 240 and 𝑧 as the output, assuming a maximum
bootstrapping level of 𝑙max = 3 and 𝑞 = 𝑞𝑤 = 𝑞0 = 240. Fig-
ure 5a illustrates ReSBM’s sub-optimal scale and bootstrap-
ping management plan. Here, 𝑦 is computed by multiplying
𝑎3𝑥 by 𝑥2, and 𝑧 from 𝑎4 ((𝑎1𝑥)2 + (𝑦2)2), requiring three
bootstraps: two at level 3 and one at level 2. This plan can be
improved by merging the two bootstraps for 𝑥 , while retain-
ing the BTS at L2 but shifting it to L3 using CSE (Common
Subexpression Elimination). Alternatively, applying constant
folding to 𝑎1 and 𝑎4, followed by CSE on 𝑥2, allows ReSBM
to directly generate an optimal plan, as shown in Figure 5b.
Since creating optimal plans is NP-hard [31], integrating
ReSBM with compiler optimizations expands optimization
opportunities, thereby enhancing its effectiveness.

5 Evaluation
We demonstrate that ReSBM, through its hierarchical design,
serves as a practical compiler solution for efficiently manag-
ing rescaling and bootstrapping in large machine learning
models on CPUs, thus advancing the state of the art. Our
evaluation explores the following three research questions:
• RQ1: Can ReSBM efficiently compile large models?
• RQ2:Does ReSBM improve encrypted inference efficiency?
• RQ3: Does ReSBM preserve accuracy in encrypted infer-
ence comparable to unencrypted inference?

• Methodology. Currently, only two compiler approaches
for scale and bootstrapping management exist: DaCapo [35]
and Fhelipe [24], both of which elevate ciphertexts to their
maximum allowed level 𝑙max. During the review of this paper,
DaCapo had only partially open-sourced its compiler, with its
runtime system that supports bootstrapping remaining pro-
prietary. Conversely, Fhelipe was fully open-sourced during
the same period but it operates as a DSL-driven FHE compiler.
Fhelipe manages bootstrapping based on a DFG’s multiplica-
tive depth using dynamic programming and employs EVA
[9] for rescaling—an approach that we have integrated into
our framework. Our analysis primarily focuses on compar-
ing ReSBM with Fhelipe in terms of encrypted inference
efficiency (RQ2). Attempting to replicate DaCapo’s method,
which uses PARS [40] to determine bootstrapping insertion
points based on live-out ciphertexts, was challenging in our
framework. Therefore, our comparison with DaCapo is lim-
ited to compile times (RQ1) based on their published results
but does not extend to encrypted inference efficiency (RQ2),
since DaCapo’s implementations are on GPUs, while ReSBM
is implemented on CPUs.

Additionally, we developed three ReSBM variants for sub-
stitution analysis to assess its management strategies: (1)
ReSBMmax, which raises bootstrapping levels to 𝑙max akin
to Fhelipe [24] and DaCapo [35]; (2) ReSBMeva, replacing
ReSBM’s scale management (ScaleMgr in line 6 and SMO-
PLC in line 12 of Algorithm 2)with EVA’s [9]; and (3) ReSBMpm,
merging ReSBMmax’s approach with PARS [40] for scale
management instead of EVA. ReSBMmax further includes an
modswitch optimization to lower levels in excessively boot-
strapped ciphertexts, similar to EVA’s method (Figure 1b).
We have implemented ReSBM and its three variants as

well as Fhelipe in the ANT-ACE FHE compiler [28]. ANT-
ACE employs a five-level intermediate representation (IR),
including Neural Network (NN) IR, CKKS IR, and Polynomial
IR. CKKS IR specifically encapsulates arithmetic operations,
rotations, SMOs, and bootstrapping relevant to CKKS, facil-
itating domain-specific analysis and optimizations. Imple-
mentations of ReSBM, its variants, and Fhelipe utilize this
CKKS IR.
• Machine Learning Models.We utilize a range of deep-
learning models, including the ResNet series (20/44/110) [22],
AlexNet [3], VGG16 [23], SqueezeNet [19], and MobileNet
[18], which are more complex than those typically used in
FHE compiler research [9, 24, 26, 40]. As RNS-CKKS [16]
does not support non-arithmetic activations like ReLU, we
adopt a minimax polynomial approximation [10] with a mul-
tiplicative depth of 11, calculating coefficients per [25].
Currently, FHE programs are about 10, 000× slower than

their unencrypted counterparts on CPUs [24]. For example,
a single encrypted inference for ResNet110 can take about 2
hours. We have dedicated considerable effort to thoroughly
evaluating ReSBM and identifying areas for improvement.
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Figure 5. Sub-optimality of ReSBM in computing ciphertext polynomials𝑦 = 𝑎3𝑥
3 and 𝑧 = 𝑎4 ((𝑎1𝑥)2+𝑦4). The input ciphertext

𝑥 starts at level 0 with a scale of 240, and the output is 𝑧 with 𝑙max = 3 and 𝑞 = 𝑞𝑤 = 𝑞0 = 240. (a) shows a sub-optimal plan that
can be improved by removing the redundant BTS for 𝑥 at L3 and shifting the BTS at L2 for 𝑥 to L3 using CSE. Alternatively,
constant folding of 𝑎1 and 𝑎4, followed by CSE on 𝑥2, produces another optimal plan in (b).

• Experimental Setup. Experimentswere done usingDocker
(25.0.1) on a Linux server with an Intel Xeon Platinum 8369B
CPU @2.70GHz and 512 GB of memory. Models were com-
piled into their FHE versions using a scale factor of 𝑞 = 256,
a waterline of 𝑞𝑤 = 𝑞, and output precision 𝑞0 = 260. These
FHE programs were converted to C using ACElib’s FHE APIs
[6, 28] and compiled with GCC under "-O2" (10.2.1). The
polynomial degree was 𝑁 = 216 for ResNet20/44/110 and
𝑁 =217 for AlexNet, MobileNet, SqueezeNet, and VGG16 to
manage larger intermediate results. ACElib’s bootstrapping
operation has a multiplicative depth of 15, and for security
[2], it sets 𝑙max=16, nearly the highest level, matching [35].
We utilized the CIFAR-10 dataset for each model, encod-

ing each input image into a single ciphertext, similar to
approaches used in Dacapo [35] and Fhelipe [24]. While our
experimental results validate ReSBM against these two ex-
isting techniques in this setting, we anticipate that these
findings will apply to larger images requiring multiple ci-
phertexts. Importantly, methods for effectively partitioning
larger images for this purpose are not yet established, high-
lighting an area of ongoing research.
• RQ1: Compile Times. Table 3 compares ReSBM’s com-
pile times against Fhelipe and DaCapo. DaCapo’s compile
times, sourced from its publication [35], were recorded on
an Intel(R) Core(TM) i7-12700. ReSBM compiles all models
in under one second, with compile times peaking at 0.773
seconds for ResNet110. It significantly outperforms DaCapo,
being faster by an average of 4250.2×, underscoring the cost-
liness of DaCapo’s liveness-analysis-based bootstrapping ap-
proach. While Fhelipe compiles models faster than ReSBM,

it sacrifices the effectiveness of scale and bootstrapping man-
agement solutions, which we discuss below.
• RQ2: Encrypted Inference Efficency. As illustrated in
Figure 6 (with 𝑙max = 16), ReSBM excels over its three vari-
ants—ReSBMeva, ReSBMmax, and ReSBMpm —in encrypted
inference efficiency across all models. ReSBM consistently
outperforms ReSBMeva by an average of 1.05×, highlighting
its superior scale management. It also surpasses ReSBMmax
by 1.07×, emphasizing the effectiveness of its minimal-level
bootstrapping strategy, and beats ReSBMpm by 1.21×, under-
scoring the benefits of its integrated scale and minimal-level
bootstrapping management. ReSBMpm’s performance is the
lowest among the three variants, with PARS’s lazy rescaling
contributing additionally to its underperformance by often
resulting in operations being performed at higher levels than
in ReSBM or EVA, thereby increasing latency (Figure 1c).
Compared to Fhelipe [24], a leading method as depicted

in Figure 1b, ReSBM achieves superior performance with an
average improvement of 12.1% by excelling in rescaling and
bootstrapping efficiencies. For scale management, Table 4
reveals that Fhelipe, utilizing EVA’s waterline rescaling, ini-
tiates significantly more rescaling operations, ranging from
5.51× (ResNet20) to 69.12× (VGG16), with an average of
21.6×. This demonstrates ReSBM’s more effective placement
of rescaling operations, enhancing its overall performance.

Let us consider bootstrapping placement. ReSBM, the first
compiler to bootstrap ciphertexts only to necessary levels,
enhances both bootstrapping and subsequent operations. Ta-
ble 5 compares bootstrapping decisions between ReSBM and
Fhelipe. While both insert the same number of bootstraps per
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Table 3. Compile times (in seconds) for ReSBM, Fhelipe [24], and DaCapo [35] on machine learning models. Fhelipe’s compile
times are obtained in our own implementation. DaCapo’s times are from [35], measured on an Intel(R) Core(TM) i7-12700.

Model ResNet20 ResNet44 ResNet110 AlexNet VGG16 SqueezeNet MobileNet
ReSBM 0.128 0.290 0.773 0.050 0.094 0.147 0.185
Fhelipe 0.088 0.200 0.540 0.035 0.067 0.095 0.127
DaCapo 15.8 79.4 – 1042.3 230.1 89.1 222.8
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Figure 6. Efficiency of encrypted inference under ReSBM,
ReSBMeva, ReSBMmax, and Fhelipe (𝑙max = 16).

model, Fhelipe always elevates to 𝑙max = 16, whereas ReSBM
customizes levels to operational needs as outlined in Algo-
rithm 2 (line 7). According to Table 2, reducing a level from
𝑙max = 16 to 𝑙max = 14 saves 3137 ms, equivalent to avoid-
ing about 240 costly ciphertext-ciphertext multiplications.
Figure 6 demonstrates that ReSBM’s improvements range
from 7.0% (MobileNet) to 21.0% (VGG16), averaging 12.1%.
This showcases how ReSBM’s minimal-level management,
enhanced by SMOPLC and BTSPLC, effectively optimizes
placement and boosts encrypted inference efficiency.

Finally, we assessed how varying 𝑙max values affect the ef-
ficiency of encrypted inference with ReSBM versus Fhelipe,
using ResNet110, the most complex model tested. Trends for
the other six models are similar. Lower security levels allow a
higher 𝑙max, while higher security levels limit it [2]. Reducing
𝑙max from 16 to 14, 12, and 10 leads both ReSBM and Fhelipe
to progressively insert more bootstraps—110, 112, 174, 217,
respectively. While Fhelipe consistently bootstraps to these
maximum levels, ReSBM opts for minimal levels, enhancing
efficiency (as shown in Table 5 for 𝑙max = 16). Figure 7 indi-
cates that decreasing 𝑙max prolongs inference times for both
methods, yet ReSBMmaintains performance advantages over
Fhelipe, with improvements of 8.8%, 5.0%, 26.0%, and 36.6%.
These performance gains primarily result from ReSBM’s suc-
cessful reduction in bootstrapping levels: 105/110 (between
levels 13-15) as indicated in Table 5, 105/112 (at level 14) at
𝑙max = 14, 174/174 (between levels 4-12) at 𝑙max = 12, and
217/217 (between levels 5-9) at 𝑙max = 10.
• RQ3: Inference Accuracy. Table 6 shows that ReSBM
maintains the accuracy of all models during encrypted in-
ference, closely matching their original pre-trained accu-
racy. Due to FHE’s high computational demands (2 hours for
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Figure 7. Comparing ReSBM and Fhelipe on encrypted in-
ference latency for ResNet110 at varying 𝑙max values.

ResNet110), we tested 1,000 images per model. Encrypted
inference incurs minor accuracy losses, peaking at 1.7% for
ResNet44, with an average loss of 0.3%. This is mainly due
to RNS-CKKS’s approximate nature and the polynomial ap-
proximation of ReLU [25]. For context, expert-crafted and
heavily hand-tuned implementations for ResNet20/44/110
[10] show accuracy drops ranging from 0.1% to 0.6%. DaCapo
[35] exhibits accuracy variations ranging from -0.1% to 0.2%,
whereas Fhelipe [24] reports variations between -1% and 1%
for ResNet20. These differences are statistically insignificant
between encrypted and unencrypted inference.

6 Related work
Since Gentry introduced the first FHE scheme based on ideal
lattices [7], several other schemes such as BGV [42], BFV
[11], GSW [8], FHEW [27], TFHE [20], and CKKS [15] have
been developed, leveraging the LWE [30] and RLWE [38]
problems. Notably, BGV, BFV, and CKKS support SIMD-style
batching, packing multiple values into a single ciphertext
to enhance throughput. RNS-CKKS [16], a variant of CKKS
known for supporting fixed-point arithmetic, is now widely
used for encrypted inference in machine learning.

In RNS-CKKS, cryptographic noise in ciphertexts escalates
with each operation, particularly multiplications. Managing
scale and bootstrapping is crucial to mitigate this noise and
ensure encrypted data integrity, significantly impacting the
efficiency of homomorphic computations. Essential scale
management techniques include EVA [9], HECATE [40], and
ELASM [26]. For bootstrapping, methods like DaCapo [35]
and Fhelipe [24] optimize placement, while techniques [4, 5,
17, 21] focus on enhancing bootstrapping efficiency.

In scale management, EVA [9] adjusts scales exceeding
𝑞 × 𝑞𝑤 , whereas PARS [40] employs a looser constraint of
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Table 4. Number of executed rescaling operation under ReSBM and Fhelipe on machine learning models at 𝑙max = 16.

ResNet20 ResNet44 ResNet110 AlexNet VGG16 SqueezeNet MobileNet
ReSBM 2627 6063 15512 610 1026 1458 2035
Fhelipe 14495 33767 86765 28775 70917 14868 16337

Table 5. Bootstrapping levels 𝑙 selected by ReSBM and Fhelipe on machine learning models at 𝑙max = 16.

Model ReSBM Fhelipe

𝑙 = 16 𝑙 = 15 𝑙 = 14 𝑙 = 13 𝑙 = 12 𝑙 = 9 𝑙 = 6 𝑙 = 5 𝑙 = 𝑙max = 16
ResNet20 1 6 3 6 2 0 0 2 20
ResNet44 1 18 3 18 2 0 0 2 44
ResNet110 1 51 3 51 2 0 0 2 110
AlexNet 0 1 3 2 0 1 0 2 9
VGG16 0 0 7 5 0 0 0 5 17

SqueezeNet 1 0 7 7 2 0 2 0 19
MobileNet 1 0 18 7 0 0 0 4 30

Table 6. Comparing inference accuracy between unen-
crypted and encrypted models compiled with ReSBM.

.
Model Unencrypted Encrypted Accurray Loss
ResNet20 90.6% 90.8% -0.2%
ResNet44 92.5% 90.9% 1.7%
ResNet110 93.9% 93.4% 0.5%
AlexNet 86.7% 86.6% 0.1%
VGG16 94.1% 94.2% -0.1%

SqueezeNet 93.2% 93.2% 0.0%
MobileNet 90.9% 90.5% 0.4%

𝑞 × 𝑞2𝑤 . HECATE [40] and ELASM [26] aim for optimal
scale management via extensive space exploration, practical
mainly for smaller models due to prolonged compile times
as noted in [35]. In contrast, ReSBM introduces an efficient
scale management strategy utilizing min-cut analysis.
Optimal bootstrapping placement is NP-hard for

𝑙max ⩾ 3 [31] but becomes polynomially solvable for 𝑙max = 2.
Fhelipe [24] uses dynamic programming for bootstrapping
based on a DFG’s multiplicative depth, incorporating EVA’s
waterline rescaling before placement. DaCapo [35] combines
liveness-based bootstrapping with PARS scale management
[40]. In contrast, ReSBM introduces a minimal-level boot-
strapping approach that enhances the efficiency of both boot-
strapping and subsequent operations.

Bootstrapping [5], the most costly operation in FHE, con-
sists of four main steps in RNS-CKKS: modulus raising, co-
effToSlot (an FHE linear transformation), modular reduction
(using a high-degree polynomial of ciphertexts), and slot-
ToCoeff (another FHE linear transformation). The first step
increases the ciphertext level, while the subsequent three,
involving intensive rotation and relinearization, dominate
the bootstrapping latency. Previous studies have optimized

bootstrapping by adopting the baby-step-giant-step scheme
for linear transformations [21] and the Paterson-Stockmeyer
algorithm for polynomial evaluations [4]. Generally, the la-
tency of FHE operations escalates with increasing ciphertext
levels. This paper introduces minimum-level bootstrapping
for the first time, which reduces the ciphertext level after
modulus raising to the minimal level required for subsequent
operations, thereby enhancing bootstrapping efficiency.

7 Conclusion
In this paper, we present ReSBM, a novel approach for compil-
ing machine learning models to support encrypted inference
using RNS-CKKS—the only FHE scheme that supports fixed-
point arithmetic. By dividing a program’s DFG into regions,
ReSBM efficiently manages scale and bootstrapping hierar-
chically. It optimizes rescaling and bootstrapping placements
in individual regions via min-cut, identifies suitable rescal-
ing regions within sequences to minimize latency and level
consumption, and formulates a comprehensive rescaling and
bootstrapping plan via dynamic programming.
While ReSBM achieves optimal SMO and bootstrapping

placement within individual regions, it does not optimize
across the entire DFG due to the NP-hard challenge of global
bootstrapping placement. Future enhancements to ReSBM
will concentrate on optimizing within bootstrapping regions,
further reducing FHE operations post-rescaling, and integrat-
ing ReSBMwith additional compiler optimizations. Addition-
ally, plans are underway to extend ReSBM to frameworks
like PyTorch and platforms such as GPUs.
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