=================================== Launching the Tensorboard =================================== Here we present how to launch the tensorboard within the ``EasyTPP`` framework. Step 1: Activate the usage of tensorboard in Config file ======================================================== As shown in `Training Pipeline <../get_started/run_train_pipeline.html>`_, we need to firstly initialize the 'model_config.yaml' file to setup the running config before training or evaluating the model. In the ``model config`` (`modeling` attribute of the config), one needs to set ``use_tfb`` to ``True`` in `trainer`. Then before the running process, summary writers tracking the performance on training and valid sets are both initialized. .. code-block:: yaml NHP_train: base_config: stage: train backend: torch dataset_id: taxi runner_id: std_tpp model_id: NHP # model name base_dir: './checkpoints/' trainer_config: batch_size: 256 max_epoch: 200 shuffle: False optimizer: adam learning_rate: 1.e-3 valid_freq: 1 use_tfb: True # Activate the tensorboard metrics: [ 'acc', 'rmse' ] seed: 2019 gpu: -1 model_config: hidden_size: 64 loss_integral_num_sample_per_step: 20 # pretrained_model_dir: ./checkpoints/75518_4377527680_230530-132355/models/saved_model thinning: num_seq: 10 num_sample: 1 num_exp: 500 # number of i.i.d. Exp(intensity_bound) draws at one time in thinning algorithm look_ahead_time: 10 patience_counter: 5 # the maximum iteration used in adaptive thinning over_sample_rate: 5 num_samples_boundary: 5 dtime_max: 5 num_step_gen: 1 Step 2: Launching the tensorboard ======================================================== We simply go to the output file of the training runner (its directory is specified in `base_dir` of ``base_config``), find out the tensorboard file address and launch it. A complete example of using tensorboard can be seen at *examples/run_tensorboard.py*. .. code-block:: python import os def main(): # one can find this dir in the config out file log_dir = './checkpoints/NHP_train_taxi_20220527-20:18:30/tfb_train' os.system('tensorboard --logdir={}'.format(log_dir)) return if __name__ == '__main__': main()